
Windows Bitmap
Filename
extension

.bmp, .dib

Internet
media type

image/bmp[1]

image/x-bmp

Type code 'BMP '

'BMPf'

'BMPp'

Uniform Type
Identifier (UTI)

com.microsoft.bmp

Developed by Microsoft
Corporation

Type of
format

Raster graphics

Open format? OSP for WMF

BMP file format
The BMP file format, also known as bitmap image file, device
independent bitmap (DIB) file format and bitmap, is a raster graphics
image file format used to store bitmap digital images, independently of the
display device (such as a graphics adapter), especially on Microsoft
Windows[2] and OS/2[3] operating systems.

The BMP file format is capable of storing two-dimensional digital images
both monochrome and color, in various color depths, and optionally with
data compression, alpha channels, and color profiles. The Windows Metafile
(WMF) specification covers the BMP file format.[4]

Device-independent bitmaps and the BMP file format
File structure

DIBs in memory
Bitmap file header

DIB header (bitmap information header)
Color table
Pixel storage

Pixel array (bitmap data)
Compression
Pixel format

RGB video subtypes
Example 1
Example 2

Usage of BMP format
Related formats
References
External links

Microsoft has defined a particular representation of color bitmaps of different color depths, as an aid to exchanging
bitmaps between devices and applications with a variety of internal representations. They called these device-
independent bitmaps or DIBs, and the file format for them is called DIB file format or BMP image file format.

According to Microsoft support:[5]

A device-independent bitmap (DIB) is a format
used to define device-independent bitmaps in
various color resolutions. The main purpose of
DIBs is to allow bitmaps to be moved from one
device to another (hence, the device-independent
part of the name). A DIB is an external format, in

Contents

Device-independent bitmaps and the BMP file format

https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Type_code
https://en.wikipedia.org/wiki/Uniform_Type_Identifier
https://en.wikipedia.org/wiki/Microsoft_Corporation
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/Microsoft_Open_Specification_Promise
https://en.wikipedia.org/wiki/Windows_Metafile
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Image_file_format
https://en.wikipedia.org/wiki/Bitmap
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Graphics_adapter
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/2D_computer_graphics
https://en.wikipedia.org/wiki/Monochrome
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Alpha_compositing
https://en.wikipedia.org/wiki/Color_management
https://en.wikipedia.org/wiki/Windows_Metafile

Diagram 1 – The structure of the bitmap image
file

contrast to a device-dependent bitmap, which
appears in the system as a bitmap object (created
by an application...). A DIB is normally
transported in metafiles (usually using the
StretchDIBits() function), BMP files, and the
Clipboard (CF_DIB data format).

The following sections discuss the data stored in the BMP file
or DIB in detail. This is the standard BMP file format.[5] Some
applications create bitmap image files which are not compliant
with the Microsoft documentation. Also, not all fields are used;
a value of 0 will be found in these unused fields.

The bitmap image file consists of fixed-size structures (headers)
as well as variable-sized structures appearing in a
predetermined sequence. Many different versions of some of
these structures can appear in the file, due to the long evolution
of this file format.

Referring to the diagram 1, the bitmap file is composed of
structures in the following order:

File structure

https://en.wikipedia.org/wiki/File:BMPfileFormat.svg

Structure
name Optional Size Purpose Comments

Bitmap
file

header
No 14 bytes

To store general
information about the
bitmap image file

Not needed after the file is loaded in memory

DIB
header No

Fixed-size
(7 different
versions
exist)

To store detailed
information about the
bitmap image and define
the pixel format

Immediately follows the Bitmap file header

Extra bit
masks Yes

3 or 4
DWORDs[6]

(12 or 16
bytes)

To define the pixel format

Present only in case the DIB header is the
BITMAPINFOHEADER and the Compression Method
member is set to either BI_BITFIELDS or
BI_ALPHABITFIELDS

Color
table

Semi-
optional

Variable
size

To define colors used by
the bitmap image data
(Pixel array)

Mandatory for color depths ≤ 8 bits

Gap1 Yes Variable
size Structure alignment An artifact of the File offset to Pixel array in the Bitmap

file header

Pixel
array No Variable

size
To define the actual
values of the pixels

The pixel format is defined by the DIB header or Extra
bit masks. Each row in the Pixel array is padded to a
multiple of 4 bytes in size

Gap2 Yes Variable
size Structure alignment An artifact of the ICC profile data offset field in the DIB

header

ICC
color

profile
Yes Variable

size
To define the color profile
for color management

Can also contain a path to an external file containing the
color profile. When loaded in memory as "non-packed
DIB", it is located between the color table and Gap1.[7]

A bitmap image file loaded into memory becomes a DIB data structure – an important component of the Windows
GDI API. The in-memory DIB data structure is almost the same as the BMP file format, but it does not contain the
14-byte bitmap file header and begins with the DIB header. For DIBs loaded in memory, the color table can also
consist of 16-bit entries that constitute indexes to the currently realized palette[8] (an additional level of indirection),
instead of explicit RGB color definitions. In all cases, the pixel array must begin at a memory address that is a multiple
of 4 bytes. In non-packed DIBs loaded in memory, the optional color profile data should be located immediately after
the color table and before the gap1 and pixel array[7] (unlike in diag. 1).

When the size of gap1 and gap2 is zero, the in-memory DIB data structure is customarily referred to as "packed DIB"
and can be referred to by a single pointer pointing to the beginning of the DIB header. In all cases, the pixel array
must begin at a memory address that is a multiple of 4 bytes. In some cases it may be necessary to adjust the number
of entries in the color table in order to force the memory address of the pixel array to a multiple of 4 bytes.[8] For
"packed DIBs" loaded in memory, the optional color profile data should immediately follow the pixel array, as
depicted in diag. 1 (with gap1=0 and gap2=0).[7]

"Packed DIBs" are required by Windows clipboard API functions as well as by some Windows patterned brush and
resource functions.[9]

This block of bytes is at the start of the file and is used to identify the file. A typical application reads this block first to
ensure that the file is actually a BMP file and that it is not damaged. The first 2 bytes of the BMP file format are the
character "B" then the character "M" in ASCII encoding. All of the integer values are stored in little-endian format
(i.e. least-significant byte first).

DIBs in memory

Bitmap file header

https://en.wikipedia.org/wiki/DWORD
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Little-endian

Offset
hex

Offset
dec Size Purpose

00 0 2 bytes

The header field used to identify the BMP and DIB file is 0x42 0x4D in hexadecimal, same as
BM in ASCII. The following entries are possible:

BM
Windows 3.1x, 95, NT, ... etc.

BA
OS/2 struct bitmap array

CI
OS/2 struct color icon

CP
OS/2 const color pointer

IC
OS/2 struct icon

PT
OS/2 pointer

02 2 4 bytes The size of the BMP file in bytes

06 6 2 bytes Reserved; actual value depends on the application that creates the image, if created manually
can be 0

08 8 2 bytes Reserved; actual value depends on the application that creates the image, if created manually
can be 0

0A 10 4 bytes The offset, i.e. starting address, of the byte where the bitmap image data (pixel array) can be
found.

This block of bytes tells the application detailed information about the image, which will be used to display the image
on the screen. The block also matches the header used internally by Windows and OS/2 and has several different
variants. All of them contain a dword (32-bit) field, specifying their size, so that an application can easily determine
which header is used in the image. The reason that there are different headers is that Microsoft extended the DIB
format several times. The new extended headers can be used with some GDI functions instead of the older ones,
providing more functionality. Since the GDI supports a function for loading bitmap files, typical Windows
applications use that functionality. One consequence of this is that for such applications, the BMP formats that they
support match the formats supported by the Windows version being run. See the table below for more information.

DIB header (bitmap information header)

https://en.wikipedia.org/wiki/File_format#Magic_number
https://en.wikipedia.org/wiki/Hexadecimal

Windows and OS/2 bitmap headers

Size Header name OS support Features Written
by

12 BITMAPCOREHEADER
OS21XBITMAPHEADER

Windows 2.0 or later
OS/2 1.x[3]

64 OS22XBITMAPHEADER OS/2 BITMAPCOREHEADER2
Adds halftoning. Adds
RLE and Huffman 1D
compression.

16 OS22XBITMAPHEADER

This variant of the previous header contains only
the first 16 bytes and the remaining bytes are
assumed to be zero values.[3]

An example of such a case is the
graphic pal8os2v2-16.bmp (http://entropy
mine.com/jason/bmpsuite/bmpsuite/q/pal
8os2v2-16.bmp)[10]
of the BMP Suite.[11]

40 BITMAPINFOHEADER Windows NT, 3.1x or later[2]

Extends bitmap width
and height to 4 bytes.
Adds 16 bpp and 32
bpp formats. Adds
RLE compression.

52 BITMAPV2INFOHEADER Undocumented Adds RGB bit masks. Adobe
Photoshop

56 BITMAPV3INFOHEADER

Not officially documented, but this documentation
was posted on Adobe's forums, by an employee
of Adobe with a statement that the standard was
at one point in the past included in official MS
documentation[12]

Adds alpha channel bit
mask.

Adobe
Photoshop

108 BITMAPV4HEADER Windows NT 4.0, 95 or later Adds color space type
and gamma correction

124 BITMAPV5HEADER Windows NT 5.0, 98 or later Adds ICC color profiles The GIMP

Offset (hex) Offset (dec) Size (bytes) OS/2 1.x BITMAPCOREHEADER[3]

0E 14 4 The size of this header (12 bytes)

12 18 2 The bitmap width in pixels (unsigned 16-bit)

14 20 2 The bitmap height in pixels (unsigned 16-bit)

16 22 2 The number of color planes, must be 1

18 24 2 The number of bits per pixel

OS/2 1.x bitmaps are uncompressed and cannot be 16 or 32 bpp.

The Windows 2.x BITMAPCOREHEADER differs from the OS/2 1.x BITMAPCOREHEADER (shown in the
table above) in the one detail that the image width and height fields are signed integers, not unsigned.[13]

Versions after BITMAPINFOHEADER only add fields to the end of the header of the previous version. For example:
BITMAPV2INFOHEADER adds fields to BITMAPINFOHEADER, and BITMAPV3INFOHEADER adds fields to
BITMAPV2INFOHEADER.

An integrated alpha channel has been introduced with the undocumented BITMAPV3INFOHEADER and with the
documented BITMAPV4HEADER (since Windows 95) and is used within Windows XP logon and theme system as
well as Microsoft Office (since v2000); it is supported by some image editing software, such as Adobe Photoshop
since version 7 and Adobe Flash since version MX 2004 (then known as Macromedia Flash). It is also supported by
GIMP, Google Chrome, Microsoft PowerPoint and Microsoft Word.

https://en.wikipedia.org/wiki/Windows_2.0
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Halftoning
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Huffman_coding
http://entropymine.com/jason/bmpsuite/bmpsuite/q/pal8os2v2-16.bmp
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Windows_3.1x
https://en.wikipedia.org/wiki/Alpha_channel
https://en.wikipedia.org/wiki/Windows_NT_4.0
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/Gamma_correction
https://en.wikipedia.org/wiki/Windows_2000
https://en.wikipedia.org/wiki/Windows_98
https://en.wikipedia.org/wiki/ICC_profile
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/Image_editing
https://en.wikipedia.org/wiki/Adobe_Photoshop
https://en.wikipedia.org/wiki/Adobe_Flash
https://en.wikipedia.org/wiki/GIMP
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Microsoft_PowerPoint
https://en.wikipedia.org/wiki/Microsoft_Word

For compatibility reasons, most applications use the older DIB headers for saving files. With OS/2 no longer
supported after Windows 2000, for now the common Windows format is the BITMAPINFOHEADER header.
See next table for its description. All values are stored as unsigned integers, unless explicitly noted.

Offset
(hex)

Offset
(dec)

Size
(bytes) Windows BITMAPINFOHEADER[2]

0E 14 4 the size of this header, in bytes (40)

12 18 4 the bitmap width in pixels (signed integer)

16 22 4 the bitmap height in pixels (signed integer)

1A 26 2 the number of color planes (must be 1)

1C 28 2 the number of bits per pixel, which is the color depth of the image. Typical values are 1,
4, 8, 16, 24 and 32.

1E 30 4 the compression method being used. See the next table for a list of possible values

22 34 4 the image size. This is the size of the raw bitmap data; a dummy 0 can be given for
BI_RGB bitmaps.

26 38 4 the horizontal resolution of the image. (pixel per metre, signed integer)

2A 42 4 the vertical resolution of the image. (pixel per metre, signed integer)

2E 46 4 the number of colors in the color palette, or 0 to default to 2n

32 50 4 the number of important colors used, or 0 when every color is important; generally
ignored

The compression method (offset 30) can be:

Value Identified by Compression method Comments

0 BI_RGB none Most common

1 BI_RLE8 RLE 8-bit/pixel Can be used only with 8-bit/pixel bitmaps

2 BI_RLE4 RLE 4-bit/pixel Can be used only with 4-bit/pixel bitmaps

3 BI_BITFIELDS OS22XBITMAPHEADER: Huffman
1D

BITMAPV2INFOHEADER: RGB bit field masks,
BITMAPV3INFOHEADER+: RGBA

4 BI_JPEG OS22XBITMAPHEADER: RLE-24 BITMAPV4INFOHEADER+: JPEG image for
printing[14]

5 BI_PNG
BITMAPV4INFOHEADER+: PNG image for
printing[14]

6 BI_ALPHABITFIELDS RGBA bit field masks only Windows CE 5.0 with .NET 4.0 or later

11 BI_CMYK none only Windows Metafile CMYK[4]

12 BI_CMYKRLE8 RLE-8 only Windows Metafile CMYK

13 BI_CMYKRLE4 RLE-4 only Windows Metafile CMYK

An OS/2 2.x OS22XBITMAPHEADER (BITMAPINFOHEADER2 in IBM's documentation) contains 24 additional
bytes:[3]

https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/Windows_CE
https://en.wikipedia.org/wiki/Windows_Metafile
https://en.wikipedia.org/wiki/CMYK_color_model
https://en.wikipedia.org/wiki/Windows_Metafile
https://en.wikipedia.org/wiki/Windows_Metafile

Offset
(hex)

Offset
(dec)

Size
(bytes) OS/2 OS22XBITMAPHEADER (BITMAPINFOHEADER2)[3]

36 54 2 An enumerated value specifying the units for the horizontal and vertical resolutions (offsets 38
and 42). The only defined value is 0, meaning pixels per metre

38 56 2 Padding. Ignored and should be zero

3A 58 2

An enumerated value indicating the direction in which the bits fill the bitmap. The only defined
value is 0, meaning the origin is the lower-left corner. Bits fill from left-to-right, then bottom-to-
top.

Note that Windows bitmaps (which don't include this field) can also specify an
upper-left origin (bits fill from left-to-right, then top-to-bottom) by using a
negative value for the image height

3C 60 2 An enumerated value indicating a halftoning algorithm that should be used when rendering the
image.

40 64 4 Halftoning parameter 1 (see below)

44 68 4 Halftoning parameter 2 (see below)

48 72 4 An enumerated value indicating the color encoding for each entry in the color table. The only
defined value is 0, indicating RGB.

4C 76 4 An application-defined identifier. Not used for image rendering

The halftoning algorithm (offset 60) can be:

Value Halftoning algorithm Comments

0 none Most common

1 Error diffusion Halftoning parameter 1 (offset 64) is the percentage of error damping. 100
indicates no damping. 0 indicates that errors are not diffused

2 PANDA: Processing Algorithm for
Noncoded Document Acquisition

Halftoning parameters 1 and 2 (offsets 64 and 68, respectively) represent the X
and Y dimensions, in pixels, respectively, of the halftoning pattern used

3 Super-circle Halftoning parameters 1 and 2 (offsets 64 and 68, respectively) represent the X
and Y dimensions, in pixels, respectively, of the halftoning pattern used

The color table (palette) occurs in the BMP image file directly after the BMP file header, the DIB header, and after the
optional three or four bitmasks if the BITMAPINFOHEADER header with BI_BITFIELDS (12 bytes) or
BI_ALPHABITFIELDS (16 bytes) option is used. Therefore, its offset is the size of the BITMAPFILEHEADER
plus the size of the DIB header (plus optional 12-16 bytes for the three or four bit masks).
Note: On Windows CE the BITMAPINFOHEADER header can be used with the BI_ALPHABITFIELDS[6] option in the
biCompression member.

The number of entries in the palette is either 2n (where n is the number of bits per pixel) or a smaller number specified
in the header (in the OS/2 BITMAPCOREHEADER header format, only the full-size palette is supported).[3][5] In
most cases, each entry in the color table occupies 4 bytes, in the order blue, green, red, 0x00 (see below for
exceptions). This is indexed in the BITMAPINFOHEADER in the structure member biBitCount.

The color table is a block of bytes (a table) listing the colors used by the image. Each pixel in an indexed color image
is described by a number of bits (1, 4, or 8) which is an index of a single color described by this table. The purpose of
the color palette in indexed color bitmaps is to inform the application about the actual color that each of these index
values corresponds to. The purpose of the color table in non-indexed (non-palettized) bitmaps is to list the colors used
by the bitmap for the purposes of optimization on devices with limited color display capability and to facilitate future
conversion to different pixel formats and paletization.

Color table

https://en.wikipedia.org/wiki/Error_diffusion
https://en.wikipedia.org/wiki/Windows_CE

The colors in the color table are usually specified in the 4-byte per entry RGBA32 format. The color table used with
the OS/2 BITMAPCOREHEADER uses the 3-byte per entry RGB24 format.[3][5] For DIBs loaded in memory, the
color table can optionally consist of 2-byte entries – these entries constitute indexes to the currently realized palette[8]

instead of explicit RGB color definitions.

Microsoft does not disallow the presence of a valid alpha channel bit mask[15] in BITMAPV4HEADER and
BITMAPV5HEADER for 1bpp, 4bpp and 8bpp indexed color images, which indicates that the color table entries can
also specify an alpha component using the 8.8.8.[0-8].[0-8] format via the RGBQUAD.rgbReserved[16] member.
However, some versions of Microsoft's documentation disallow this feature by stating that the
RGBQUAD.rgbReserved member "must be zero".

As mentioned above, the color table is normally not used when the pixels are in the 16-bit per pixel (16bpp) format
(and higher); there are normally no color table entries in those bitmap image files. However, the Microsoft
documentation (on the MSDN web site as of Nov. 16, 2010[17]) specifies that for 16bpp (and higher), the color table
can be present to store a list of colors intended for optimization on devices with limited color display capability, while
it also specifies, that in such cases, no indexed palette entries are present in this Color Table. This may seem like a
contradiction if no distinction is made between the mandatory palette entries and the optional color list.

The bits representing the bitmap pixels are packed in rows(also known as strides or scan lines). The size of each row
is rounded up to a multiple of 4 bytes (a 32-bit DWORD) by padding.[18]

For images with height above 1, multiple padded rows are stored consecutively, forming a Pixel Array.

The total number of bytes necessary to store one row of pixels can be calculated as:

ImageWidth is expressed in pixels. The equation above uses the floor and ceiling functions.

The total number of bytes necessary to store an array of pixels in an n bits per pixel (bpp) image, with 2n colors, can
be calculated by accounting for the effect of rounding up the size of each row to a multiple of 4 bytes, as follows:

PixelArraySize = RowSize · |ImageHeight|
ImageHeight is expressed in pixels. The absolute value is necessary because ImageHeight is
expressed as a negative number for top-down images.

The pixel array is a block of 32-bit DWORDs, that describes the image pixel by pixel. Usually pixels are stored
"bottom-up", starting in the lower left corner, going from left to right, and then row by row from the bottom to the top
of the image.[5] Unless BITMAPCOREHEADER is used, uncompressed Windows bitmaps also can be stored from the
top to bottom, when the Image Height value is negative.

In the original OS/2 DIB, the only four legal values of color depth were 1, 4, 8, and 24 bits per pixel (bpp).[5]

Contemporary DIB Headers allow pixel formats with 1, 2, 4, 8, 16, 24 and 32 bits per pixel (bpp).[19] GDI+ also
permits 64 bits per pixel.[20]

Padding bytes (not necessarily 0) must be appended to the end of the rows in order to bring up the length of the rows
to a multiple of four bytes. When the pixel array is loaded into memory, each row must begin at a memory address
that is a multiple of 4. This address/offset restriction is mandatory only for Pixel Arrays loaded in memory. For file
storage purposes, only the size of each row must be a multiple of 4 bytes while the file offset can be arbitrary.[5] A 24-
bit bitmap with Width=1, would have 3 bytes of data per row (blue, green, red) and 1 byte of padding, while Width=2
would have 6 bytes of data and 2 bytes of padding, Width=3 would have 9 bytes of data and 3 bytes of padding, and
Width=4 would have 12 bytes of data and no padding.

Pixel storage

Pixel array (bitmap data)

https://en.wikipedia.org/wiki/RGBA
https://en.wikipedia.org/wiki/RGB
https://en.wikipedia.org/wiki/RGBAX
https://en.wikipedia.org/wiki/Packed
https://en.wikipedia.org/wiki/DWORD
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Power_of_two
https://en.wikipedia.org/wiki/Graphics_Device_Interface

Indexed color images may be compressed with 4-bit or 8-bit RLE or Huffman 1D algorithm.
OS/2 BITMAPCOREHEADER2 24bpp images may be compressed with the 24-bit RLE algorithm.
The 16bpp and 32bpp images are always stored uncompressed.
Note that images in all color depths can be stored without compression if so desired.

The 1-bit per pixel (1bpp) format supports 2 distinct colors, (for example: black and white). The pixel
values are stored in each bit, with the first (left-most) pixel in the most-significant bit of the first byte.[5]

Each bit is an index into a table of 2 colors. An unset bit will refer to the first color table entry, and a set
bit will refer to the last (second) color table entry.
The 2-bit per pixel (2bpp) format supports 4 distinct colors and stores 4 pixels per 1 byte, the left-most
pixel being in the two most significant bits (Windows CE only:[21]). Each pixel value is a 2-bit index
into a table of up to 4 colors.
The 4-bit per pixel (4bpp) format supports 16 distinct colors and stores 2 pixels per 1 byte, the left-
most pixel being in the more significant nibble.[5] Each pixel value is a 4-bit index into a table of up to
16 colors.
The 8-bit per pixel (8bpp) format supports 256 distinct colors and stores 1 pixel per 1 byte. Each byte
is an index into a table of up to 256 colors.
The 16-bit per pixel (16bpp) format supports 65536 distinct colors and stores 1 pixel per 2-byte
WORD. Each WORD can define the alpha, red, green and blue samples of the pixel.
The 24-bit per pixel (24bpp) format supports 16,777,216 distinct colors and stores 1 pixel value per 3
bytes. Each pixel value defines the red, green and blue samples of the pixel (8.8.8.0.0 in RGBAX
notation). Specifically, in the order: blue, green and red (8 bits per each sample).[5]

The 32-bit per pixel (32bpp) format supports 4,294,967,296 distinct colors and stores 1 pixel per 4-
byte DWORD. Each DWORD can define the alpha, red, green and blue samples of the pixel.

In order to resolve the ambiguity of which bits define which samples, the DIB headers provide certain defaults as well
as specific BITFIELDS, which are bit masks that define the membership of particular group of bits in a pixel to a
particular channel. The following diagram defines this mechanism:

Diag. 2 – The BITFIELDS mechanism for a 32-bit pixel depicted in RGBAX sample length notation

The sample fields defined by the BITFIELDS bit masks have to be contiguous and non-overlapping, but the order of
the sample fields is arbitrary. The most ubiquitous field order is: Alpha, Blue, Green, Red (MSB to LSB). The red,
green and blue bit masks are valid only when the Compression member of the DIB header is set to BI_BITFIELDS.
The alpha bit mask is valid whenever it is present in the DIB header or when the Compression member of the DIB
header is set to BI_ALPHABITFIELDS[6] (Windows CE only).

Compression

Pixel format

https://en.wikipedia.org/wiki/Palette_(computing)
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Windows_CE
https://en.wikipedia.org/wiki/Nibble
https://en.wikipedia.org/wiki/Sample_(graphics)
https://en.wikipedia.org/wiki/Channel_(digital_image)
https://en.wikipedia.org/wiki/File:BitfieldsSLN.svg
https://en.wikipedia.org/wiki/Windows_CE

Uncompressed RGB Video Subtypes[23]

R.G.B.A.X RGB subtype R.G.B.A.X ARGB subtype

8.8.8.0.8 RGB32 8.8.8.8.0 ARGB32

10.10.10.2.0 A2R10G10B10

8.8.8.0.0 RGB24 10.10.10.2.0 A2B10G10R10

5.6.5.0.0 RGB565 4.4.4.4.0 ARGB4444

5.5.5.0.1 RGB555 5.5.5.1.0 ARGB1555

Bits Bits

Bit fields for ten RGB bits[23]

Bit field Offset A2R10G10B10 A2B10G10R10

Red 36h 00 00 F0 3F LE: 3FF00000 20…29 FF 03 00 00 LE: 000003FF 0… 9

Green 3Ah 00 FC 0F 00 LE: 000FFC00 10…19 00 FC 0F 00 LE: 000FFC00 10…19

Blue 3Eh FF 03 00 00 LE: 000003FF 0… 9 00 00 F0 3F LE: 3FF00000 20…29

Alpha 42h 00 00 00 C0 LE: C0000000 30…31 00 00 00 C0 LE: C0000000 30…31

Diag. 3 – The pixel format with an alpha channel for a 16-bit pixel (in
RGBAX sample Length notation) actually generated by Adobe
Photoshop[22]

All of the possible pixel formats in a DIB

The BITFIELD mechanism described above allows for the definition of tens of thousands different pixel formats,
however only several of them are used in practice,[22] all palettized formats RGB8, RGB4, and RGB1 (marked in
yellow in the table above, dshow.h MEDIASUBTYPE names) and:

In version 2.1.4 FFmpeg supported (in its own terminology) the BMP pixel formats bgra, bgr24, rgb565le, rgb555le,
rgb444le, rgb8, bgr8, rgb4_byte, bgr4_byte, gray, pal8, and monob; i.e., bgra was the only supported pixel format
with transparency.[24]

RGB video subtypes

Example 1

https://en.wikipedia.org/wiki/File:SLNotation44440.svg
https://en.wikipedia.org/wiki/File:AllBMPformats.png
https://en.wikipedia.org/wiki/FFmpeg

Example 1 of a 2×2
pixel bitmap, with 24
bits/pixel encoding

Offset Size Hex value Value Description
BMP Header

0h 2 42 4D "BM" ID field (42h, 4Dh)

2h 4 46 00 00 00 70 bytes (54+16) Size of the BMP file (54 bytes header + 16 bytes data)

6h 2 00 00 Unused Application specific

8h 2 00 00 Unused Application specific

Ah 4 36 00 00 00 54 bytes (14+40) Offset where the pixel array (bitmap data) can be found

DIB Header

Eh 4 28 00 00 00 40 bytes Number of bytes in the DIB header (from this point)

12h 4 02 00 00 00 2 pixels (left to right
order) Width of the bitmap in pixels

16h 4 02 00 00 00 2 pixels (bottom to top
order)

Height of the bitmap in pixels. Positive for bottom to top
pixel order.

1Ah 2 01 00 1 plane Number of color planes being used

1Ch 2 18 00 24 bits Number of bits per pixel

1Eh 4 00 00 00 00 0 BI_RGB, no pixel array compression used

22h 4 10 00 00 00 16 bytes Size of the raw bitmap data (including padding)

26h 4 13 0B 00 00 2835 pixels/metre
horizontal Print resolution of the image,

72 DPI × 39.3701 inches per metre yields 2834.64722Ah 4 13 0B 00 00 2835 pixels/metre
vertical

2Eh 4 00 00 00 00 0 colors Number of colors in the palette

32h 4 00 00 00 00 0 important colors 0 means all colors are important

Start of pixel array (bitmap data)

36h 3 00 00 FF 0 0 255 Red, Pixel (0,1)

39h 3 FF FF FF 255 255 255 White, Pixel (1,1)

3Ch 2 00 00 0 0 Padding for 4 byte alignment (could be a value other
than zero)

3Eh 3 FF 00 00 255 0 0 Blue, Pixel (0,0)

41h 3 00 FF 00 0 255 0 Green, Pixel (1,0)

44h 2 00 00 0 0 Padding for 4 byte alignment (could be a value other
than zero)

Following is an example of a 2×2 pixel, 24-bit bitmap (Windows DIB header
BITMAPINFOHEADER) with pixel format RGB24.

Following is an example of a 4×2 pixel, 32-bit bitmap with opacity values in the alpha channel (Windows DIB
Header BITMAPV4HEADER) with pixel format ARGB32.

Example 2

https://en.wikipedia.org/wiki/File:Bmp_format.svg
https://en.wikipedia.org/wiki/Dots_per_inch

Example 2 of a 4×2 pixel bitmap, with 32
bits/pixel encoding

https://en.wikipedia.org/wiki/Netpbm#Transparency
https://en.wikipedia.org/wiki/File:Bmp_format2.svg

Offset Size Hex value Value Description
BMP Header

0h 2 42 4D "BM" ID field (42h, 4Dh)

2h 4 9A 00 00 00 154 bytes (122+32) Size of the BMP file

6h 2 00 00 Unused Application specific

8h 2 00 00 Unused Application specific

Ah 4 7A 00 00 00 122 bytes (14+108) Offset where the pixel array (bitmap data) can be
found

DIB Header

Eh 4 6C 00 00 00 108 bytes Number of bytes in the DIB header (from this
point)

12h 4 04 00 00 00 4 pixels (left to right order) Width of the bitmap in pixels

16h 4 02 00 00 00 2 pixels (bottom to top order) Height of the bitmap in pixels

1Ah 2 01 00 1 plane Number of color planes being used

1Ch 2 20 00 32 bits Number of bits per pixel

1Eh 4 03 00 00 00 3 BI_BITFIELDS, no pixel array compression used

22h 4 20 00 00 00 32 bytes Size of the raw bitmap data (including padding)

26h 4 13 0B 00 00 2835 pixels/metre horizontal Print resolution of the image,
72 DPI × 39.3701 inches per metre yields
2834.64722Ah 4 13 0B 00 00 2835 pixels/metre vertical

2Eh 4 00 00 00 00 0 colors Number of colors in the palette

32h 4 00 00 00 00 0 important colors 0 means all colors are important

36h 4 00 00 FF 00 00FF0000 in big-endian Red channel bit mask (valid because
BI_BITFIELDS is specified)

3Ah 4 00 FF 00 00 0000FF00 in big-endian Green channel bit mask (valid because
BI_BITFIELDS is specified)

3Eh 4 FF 00 00 00 000000FF in big-endian Blue channel bit mask (valid because
BI_BITFIELDS is specified)

42h 4 00 00 00 FF FF000000 in big-endian Alpha channel bit mask

46h 4 20 6E 69 57 little-endian "Win " LCS_WINDOWS_COLOR_SPACE

4Ah 24h 24h* 00...00 CIEXYZTRIPLE Color
Space endpoints Unused for LCS "Win " or "sRGB"

6Eh 4 00 00 00 00 0 Red Gamma Unused for LCS "Win " or "sRGB"

72h 4 00 00 00 00 0 Green Gamma Unused for LCS "Win " or "sRGB"

76h 4 00 00 00 00 0 Blue Gamma Unused for LCS "Win " or "sRGB"

Start of the Pixel Array (the bitmap Data)

7Ah 4 FF 00 00 7F 255 0 0 127 Blue (Alpha: 127), Pixel (1,0)

7Eh 4 00 FF 00 7F 0 255 0 127 Green (Alpha: 127), Pixel (1,1)

82h 4 00 00 FF 7F 0 0 255 127 Red (Alpha: 127), Pixel (1,2)

86h 4 FF FF FF 7F 255 255 255 127 White (Alpha: 127), Pixel (1,3)

8Ah 4 FF 00 00 FF 255 0 0 255 Blue (Alpha: 255), Pixel (0,0)

8Eh 4 00 FF 00 FF 0 255 0 255 Green (Alpha: 255), Pixel (0,1)

92h 4 00 00 FF FF 0 0 255 255 Red (Alpha: 255), Pixel (0,2)

96h 4 FF FF FF FF 255 255 255 255 White (Alpha: 255), Pixel (0,3)

Note that the bitmap data starts with the lower left hand corner of the image.

Usage of BMP format

https://en.wikipedia.org/wiki/Dots_per_inch

The simplicity of the BMP file format, and its widespread familiarity in Windows and elsewhere, as well as the fact
that this format is relatively well documented and has an open format, makes BMP a very common format that image
processing programs from many operating systems can read and write. ICO and CUR files contain bitmaps starting
with a BITMAPINFOHEADER.

Many older graphical user interfaces used bitmaps in their built-in graphics subsystems;[25] for example, the Microsoft
Windows and OS/2 platforms' GDI subsystem, where the specific format used is the Windows and OS/2 bitmap file
format, usually named with the file extension of .BMP.[26]

While most BMP files have a relatively large file size due to lack of any compression (or generally low-ratio run-
length encoding on palletized images), many BMP files can be considerably compressed with lossless data
compression algorithms such as ZIP because they contain redundant data. Some formats, such as RAR, even include
routines specifically targeted at efficient compression of such data.

The X Window System uses a similar XBM format for black-and-white images, and XPM (pixelmap) for color
images. There are also a variety of "raw" formats, which save raw data with no other information. The Portable
Pixmap (PPM) and Truevision TGA formats also exist, but are less often used – or only for special purposes; for
example, TGA can contain transparency information.

1. "IANA Considerations" (https://datatracker.ietf.org/doc/html/rfc7903#section-5). Windows Image Media
Types (https://datatracker.ietf.org/doc/html/rfc7903). sec. 5. doi:10.17487/RFC7903 (https://doi.org/10.
17487%2FRFC7903). RFC 7903 (https://datatracker.ietf.org/doc/html/rfc7903).

2. James D. Murray; William vanRyper (April 1996). Encyclopedia of Graphics File Formats (https://archi
ve.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/) (Second ed.). O'Reilly.
bmp (https://archive.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/). ISBN 1-
56592-161-5. Retrieved 2014-03-07.

3. James D. Murray; William vanRyper (April 1996). Encyclopedia of Graphics File Formats (https://archi
ve.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/) (Second ed.). O'Reilly.
os2bmp (https://archive.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/).
ISBN 1-56592-161-5. Retrieved 2014-03-07.

4. "[MS-WMF]: Windows Metafile Format" (http://msdn.microsoft.com/en-us/library/cc250370.aspx).
MSDN. 2014-02-13. Retrieved 2014-03-12.

5. "DIBs and Their Uses" (https://msdn.microsoft.com/en-us/library/ms969901.aspx). Microsoft Help and
Support. Retrieved 2015-05-14.

6. MSDN - BITMAPINFOHEADER (Windows CE 5.0): BI_ALPHABITFIELDS in biCompression member
(http://msdn.microsoft.com/en-us/library/aa452885.aspx)

7. MSDN Bitmap Header Types (http://msdn.microsoft.com/en-us/library/dd183386%28VS.85%29.aspx)
8. MSDN BITMAPINFO Structure (http://msdn.microsoft.com/en-us/library/dd183375%28VS.85%29.asp

x)
9. Feng Yuan - Windows graphics programming: Win32 GDI and DirectDraw: Packed Device-

Independent Bitmap (CreateDIBPatternBrush, CreateDIBPatternBrushPt, FindResource,
LoadResource, LockResource) (https://books.google.com/books?id=-O92IIF1Bj4C&pg=PA595)

10. Summers, Jason (2015-10-30). "pal8os2v2-16.bmp" (http://entropymine.com/jason/bmpsuite/bmpsuit
e/q/pal8os2v2-16.bmp). Retrieved 2016-07-06.

11. Summers, Jason (2015-10-30). "BMP Suite" (http://entropymine.com/jason/bmpsuite/). Retrieved
2016-07-06.

12. Cox, Chris (2010-11-15). "Invalid BMP Format with Alpha channel" (https://forums.adobe.com/messag
e/3272950#3272950). Photoshop Windows forum. Adobe. Archived (https://web.archive.org/web/201
50127132443/https://forums.adobe.com/message/3272950) from the original on 2015-01-27.
Retrieved 2016-05-22.

Related formats

References

https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/ICO_(file_format)
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphics_Device_Interface
https://en.wikipedia.org/wiki/File_extension
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/RAR_(file_format)
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/X_Bitmap
https://en.wikipedia.org/wiki/X_PixMap
https://en.wikipedia.org/wiki/Portable_Pixmap
https://en.wikipedia.org/wiki/Truevision_TGA
https://datatracker.ietf.org/doc/html/rfc7903#section-5
https://datatracker.ietf.org/doc/html/rfc7903
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC7903
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7903
https://archive.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/
https://en.wikipedia.org/wiki/O%27Reilly_Media
https://archive.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-56592-161-5
https://archive.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/
https://en.wikipedia.org/wiki/O%27Reilly_Media
https://archive.org/details/mac_Graphics_File_Formats_Second_Edition_1996/page/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-56592-161-5
http://msdn.microsoft.com/en-us/library/cc250370.aspx
https://en.wikipedia.org/wiki/MSDN
https://msdn.microsoft.com/en-us/library/ms969901.aspx
http://msdn.microsoft.com/en-us/library/aa452885.aspx
http://msdn.microsoft.com/en-us/library/dd183386%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd183375%28VS.85%29.aspx
https://books.google.com/books?id=-O92IIF1Bj4C&pg=PA595
http://entropymine.com/jason/bmpsuite/bmpsuite/q/pal8os2v2-16.bmp
http://entropymine.com/jason/bmpsuite/
https://forums.adobe.com/message/3272950#3272950
https://en.wikipedia.org/wiki/Adobe_Photoshop
https://en.wikipedia.org/wiki/Adobe_Systems
https://web.archive.org/web/20150127132443/https://forums.adobe.com/message/3272950

Bitmap File Structure (http://www.digicamsoft.com/bmp/bmp.html), at digicamsoft.com
An introduction to DIBs (Device Independent Bitmaps) (http://www.herdsoft.com/ti/davincie/imex3j8i.ht
m), at herdsoft.com
A simple bitmap loader C++ class (http://www.kalytta.com/bitmap.h), at kalytta.com (A2R10G10B10
not yet supported)
The BMP File Format, Part 1 By David Charlap (http://drdobbs.com/architecture-and-design/1844095
17) at Dr. Dobb's journal of software tools (drdobbs.com), March 1995

Retrieved from "https://en.wikipedia.org/w/index.php?title=BMP_file_format&oldid=1100879578"

This page was last edited on 28 July 2022, at 05:01 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0;
additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.,
a non-profit organization.

13. "Microsoft Windows Bitmap: Summary from the Encyclopedia of Graphics File Formats" (https://www.f
ileformat.info/format/bmp/egff.htm).

14. "JPEG and PNG Extensions for Specific Bitmap Functions and Structures" (http://msdn.microsoft.com/
en-us/library/dd145023(VS.85).aspx).

15. MSDN – BITMAPV4HEADER: The member bV4AlphaMask (http://msdn.microsoft.com/en-us/library/d
d183380%28VS.85%29.aspx)

16. MSDN – RGBQUAD: rgbReserved member (http://msdn.microsoft.com/en-us/library/dd162938%28V
S.85%29.aspx)

17. see note under biClrUsed MSDN BITMAPINFOHEADER (http://msdn.microsoft.com/en-us/library/wind
ows/desktop/dd183376(v=vs.85).aspx)

18. Image Stride - MSDN (https://docs.microsoft.com/en-us/windows/win32/medfound/image-stride)
19. MSDN - BITMAPINFOHEADER: The member biBitCount (http://msdn.microsoft.com/en-us/library/dd1

83376%28VS.85%29.aspx)
20. "Types of Bitmaps" (http://msdn.microsoft.com/en-us/library/ms536393(v=vs.85).aspx). MSDN. 2012-

06-03. Retrieved 2014-03-16.
21. MSDN: Windows CE - BITMAPINFOHEADER Structure (http://msdn.microsoft.com/en-us/library/ms95

9648.aspx)
22. Adobe Photoshop: BMP Format (http://livedocs.adobe.com/en_US/Photoshop/10.0/WSfd1234e1c4b6

9f30ea53e41001031ab64-7751.html) Archived (https://web.archive.org/web/20110922225022/http://li
vedocs.adobe.com/en_US/Photoshop/10.0/WSfd1234e1c4b69f30ea53e41001031ab64-7751.html)
2011-09-22 at the Wayback Machine

23. "Uncompressed RGB Video Subtypes" (http://msdn.microsoft.com/en-us/library/windows/desktop/dd4
07253(v=vs.85).aspx). dshow.h. MSDN. Retrieved 2014-03-11.

24. "Image Formats" (http://www.ffmpeg.org/general.html#Image-Formats). FFmpeg General
Documentation. 2014. Retrieved 2014-02-23.

25. Julian Smart; Stefan Csomor & Kevin Hock (2006). Cross-Platform GUI Programming with Wxwidgets
(https://books.google.com/books?id=CyMsvtgnq0QC&q=bitmap+pixmap+gui&pg=PA265). Prentice
Hall. ISBN 0-13-147381-6.

26. "Bitmap Image File (BMP), Version 5" (http://www.digitalpreservation.gov/formats/fdd/fdd000189.shtm
l). Digital Preservation. Library of Congress. 2014-01-08. Retrieved 2014-03-11.

External links

http://www.digicamsoft.com/bmp/bmp.html
http://www.herdsoft.com/ti/davincie/imex3j8i.htm
http://www.kalytta.com/bitmap.h
http://drdobbs.com/architecture-and-design/184409517
https://en.wikipedia.org/w/index.php?title=BMP_file_format&oldid=1100879578
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://www.fileformat.info/format/bmp/egff.htm
http://msdn.microsoft.com/en-us/library/dd145023(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd183380%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd162938%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd183376(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/win32/medfound/image-stride
http://msdn.microsoft.com/en-us/library/dd183376%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms536393(v=vs.85).aspx
https://en.wikipedia.org/wiki/Microsoft_Developer_Network
http://msdn.microsoft.com/en-us/library/ms959648.aspx
http://livedocs.adobe.com/en_US/Photoshop/10.0/WSfd1234e1c4b69f30ea53e41001031ab64-7751.html
https://web.archive.org/web/20110922225022/http://livedocs.adobe.com/en_US/Photoshop/10.0/WSfd1234e1c4b69f30ea53e41001031ab64-7751.html
https://en.wikipedia.org/wiki/Wayback_Machine
http://msdn.microsoft.com/en-us/library/windows/desktop/dd407253(v=vs.85).aspx
https://en.wikipedia.org/wiki/MSDN
http://www.ffmpeg.org/general.html#Image-Formats
https://en.wikipedia.org/wiki/FFmpeg
https://books.google.com/books?id=CyMsvtgnq0QC&q=bitmap+pixmap+gui&pg=PA265
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-13-147381-6
http://www.digitalpreservation.gov/formats/fdd/fdd000189.shtml
https://en.wikipedia.org/wiki/Library_of_Congress

